Books

Nonlinear Inclusions and Hemivariational Inequalities

Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26, Springer, New York, 2013, pages: 285, ISBN: 978-1-4614-4231-8
S. Migorski, A. Ochal, M. Sofonea

read more

Navier–Stokes Equations. An Introduction with Applications.

Advances in Mechanics and Mathematics, vol. 34, Springer International Publishing, New York, 2016, pages: 390, ISBN: 978-3-319-27758-5
G. Łukaszewicz, P. Kalita

read more

Editorial work

Calculus of Variations and Partial Differential Equations

Banach Center Publications, Vol. 101, 2014, pages: 238, ISBN:978-83-86806-23-2
Editors: T. Adamowicz, A. Kalamajska, S. Migorski, and A. Ochal

read more

Advances in Variational and Hemivariational Inequalities with Applications

Series: Advances in Mechanics and Mathematics, Vol. 33, 2015, pages: 368, ISBN:978-3-319-14489-4

Editors: W. Han. S. Migorski, M. Sofonea

read more

Special Issue: Contact Mechanics

Nonlinear Analysis: Real World Applications
Volume 22, 2015

Managing Editor: S. Migorski,
Editors: M. Shillor and M. Sofonea

read more

Special Issue: Dynamics and Control of Complex and Switched Systems

Mathematical Problems in Engineering, 2015

Editors: Honglei Xu, Yi Zhang,
Jianxiong Ye, Stanisław Migorski

read more

Research papers in journals

    • M. Barboteu, W. Han, S. Migorski, On numerical approximation of a variational-hemivariational inequality modeling contact problems for locking materials, Computers and Mathematics with Applications, 2019, in press.
    • X. Cheng, Q. Xiao, S. Migorski, A. Ochal, Error estimate for quasistatic history-dependent contact model, Computers and Mathematics with Applications, 2019, in press.
    • L. Gasinski, N.S. Papageorgiou, K. Winowski, Positive solutions for nonlinear Robin problems with concave terms, Journal of Convex Analysis, 26(2019), in press.
    • W. Han, S. Migorski, M. Sofonea, On a penalty based numerical method for unilateral contact problems with non-monotone boundary condition, Journal of Computational and Applied Mathematics, 2019, in press.
    • W. Han, S.D. Zeng, On convergence of numerical methods for variational-hemivariational inequalities under minimal solution regularity, Applied Mathematics Letters, 2019, in press.
    • M. Jureczka, A. Ochal, Numerical analysis and simulations of contact problem with wear, Computers and Mathematics with Applications, 2019, in press.
    • S. Migorski, C. Fang, S. Zeng, A new modified subgradient extragradient method for solving variational inequalities, Applicable Analysis, 2019, in press.
    • S. Migorski, A.A. Khan, S. Zeng, Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of p-Laplacian type, Inverse Problems, 2019, in press.
    • S. Migorski, M. Sofonea, S. Zeng, Well-posedness of history-dependent sweeping processes, SIAM Journal on Mathematical Analysis, 2019, in press.
    • S. Migorski, S. Zeng, A class of generalized evolutionary problems driven by variational inequalities and fractional operators, Set-Valued and Variational Analysis, 2019, in press.
    • S. Migorski, S. Zeng, Rothe method and numerical analysis for history-dependent hemivariational inequalities with applications to contact mechanics, Numerical Algorithms, 2019, in press.
    • S. Migorski, S. Zeng, Mixed variational inequalities driven by fractional evolutionary equations, Acta Mathematica Scientia, 2019, in press.
    • Z. Peng, L. Gasinski, S. Migorski, A. Ochal, A class of evolution variational inequalities with nonconvex constraints, Optimization, 2019, in press.
    • L. Gasinski, N.S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Advances in Calculus of Variations, 12 (2019), 31-56.
    • Z.H. Liu, D. Motreanu, S.H. Zeng, Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Calculus of Variations and Partial Differential Equations, 58 (2019), 28.
    • S. Migorski, P. Gamorski, Variational-hemivariational inequality for a class of dynamic nonsmooth frictional contact problems, Applied Mathematics and Computations, 346 (2019), 465-479.
    • S. Migorski, A.A. Khan, S.S. Zeng, Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of p-Laplacian type, Inverse Problems, 35 (2019), 035004.
    • S. Migorski, P. Szafraniec, Nonmonotone slip problem for miscible liquids, Journal of Mathematical Analysis and Applications, 471 (2019), 342-357.
    • S. Migorski, S.D. Zeng, The Rothe method for multi-term time fractional integral diffusion equations, Discrete and Continuous Dynamical Systems – Series B, 24 (2019), 719-735.
    • Y. Bai, S. Migorski, S.D. Zeng, Generalized vector complementarity problem in fuzzy environment, Fuzzy Sets and Systems, 347 (2018), 142-151.
    • M. Barboteu, K. Bartosz, D. Danan, Analysis of a dynamic contact problem with nonmonotone friction and non-clamped boundary conditions, Applied Numerical Mathematics, 126 (2018), 53-77.
    • M. Barboteu, L. Gasinski, P. Kalita, Analysis of a dynamic frictional contact problem for hyperviscoelastic material with non-convex energy density, Mathematics and Mechanics of Solids, 23 (2018), 359-391.
    • K. Bartosz, L. Gasinski, Z.H. Liu, P. Szafraniec, Convergence of a time discretization for a nonlinear second-order inclusion, Proceedings of the Edinburgh Mathematical Society, 61 (2018), 93-120.
    • K. Bartosz, T. Janiczko, P. Szafraniec, M. Shillor, Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction, Applicable Analysis, 97 (2018), 1432-1453.
    • M.M. Freitas, P. Kalita, J.A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, Journal of Differential Equations, 264 (2018), 1886-1945.
    • P. Gamorski, S. Migorski, Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem, Mathematics and Mechanics of Solids, 23 (2018), 329-347.
    • L. Gasinski, S. Migorski, A. Ochal, Z.J. Peng, Optimal control for doubly nonlinear evolutionary inclusions, Applied Mathematics and Computations, 321 (2018), 244-254.
    • L. Gasinski, N. S. Papageorgiou, Resonant Robin problems with indefinite and unbounded potential, Mathematische Nachrichten, 291 (2018), 848-878.
    • L. Gasinski, N.S. Papageorgiou, Nodal solutions for nonlinear non-homogeneous Robin problems with an indefinite potential, Proceedings of the Edinburgh Mathematical Society, 61 (2018),943-959.
    • P. Kalita, P.M. Kowalski, On multivalued duffing equation, Journal of Mathematical Analysis and Applications, 462 (2018), 1130-1147.
    • P. Kalita, G. Lukaszewicz, J. Siemianowski, Rayleigh-Bénard problem for thermomicropolar fluids, Topological Methods in Nonlinear Analysis, 52 (2018), 477-514.
    • A. Kulig, Variational-hemivariational approach to quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term, friction and damage, Nonlinear Analysis - Real World Applications, 44 (2018), 401-416.
    • Z.H. Liu, D. Motreanu, S.D. Zeng, Nonlinear evolutionary systems driven by mixed variational inequalities and its applications, Nonlinear Analysis - Real World Applications, 42 (2018), 409-421.
    • Z.H. Liu, D. Motreanu, S.D. Zeng, On the well-posedness of differential mixed quasi-variational inequalities, Topological Methods in Nonlinear Analysis, 51 (2018), 135-150.
    • Z.H. Liu, D. Motreanu, S.D. Zeng, Nonlinear evolutionary systems driven by quasi-hemivariational inequalities, Mathematical Methods in the Applied Sciences, 41 (2018), 1214-1229.
    • Z.H. Liu, S.D. Zeng, D. Motreanu, Partial differential hemivariational inequalities, Advances in Nonlinear Analysis, 7 (2018), 571-586.
    • S. Migorski, S. Dudek, Evolutionary Oseen model for generalized Newtonian fluid with multivalued nonmonotone friction law, Journal of Mathematical Fluid Mechanics, 20 (2018), 1317-1333.
    • S. Migorski, A. Ochal, M. Shillor, M. Sofonea, Nonsmooth dynamic frictional contact of a thermoviscoelastic body, Applicable Analysis, 97 (2018), 1228-1245.
    • S. Migorski, B. Zeng, Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities, Discrete and Continuous Dynamical Systems-Series B, 23 (2018), 4477-4498.
    • S. Migorski, S.D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Analysis - Real World Applications, 43 (2018), 121-143.
    • S. Migorski, S.D. Zeng, Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact, Zeitschrift fur Angewandte Mathematik und Mechanik, 98 (2018), 1503-1520.
    • A. Ochal, M. Jureczka, Numerical treatment of contact problems with thermal effect, Discrete and Continuous Dynamical Systems-Series B, 23 (2018), 387-400.
    • M. Sofonea, K. Bartosz, Subdifferential inclusions for stress formulations of unilateral contact problems, Mathematics and Mechanics of Solids, 23 (2018), 392-410.
    • M. Sofonea, S. Migorski, W.M. Han, A penalty method for history-dependent variational-hemivariational inequalities, Computers & Mathematics with Applications, 75 (2018), 2561-2573.
    • B. Zeng, Z.H. Liu, S. Migorski, On convergence of solutions to variational-hemivariational inequalities, Zeitschrift fur angewandte Mathematik und Physik, 69 (2018), 87.
    • B. Zeng, S. Migorski, Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications, Computers & Mathematics with Applications, 75 (2018), 89-104.
    • S.D. Zeng, Z.H. Liu, S. Migorski, Positive solutions to nonlinear nonhomogeneous inclusion problems with dependence on the gradient, Journal of Mathematical Analysis and Applications, 463 (2018), 432-448.
    • S.D. Zeng, Z.H. Liu, S. Migorski, A class of fractional differential hemivariational inequalities with application to contact problem, Zeitschrift fur Angewandte Mathematik und Physik, 69 (2018), 36.
    • S.D. Zeng, S. Migorski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation 56 (2018), 34-48.
    • M. Barboteu, K. Bartosz, W.M. Han, Numerical Analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics, Computer Methods in Applied Mechanics and Engineering, 318 (2017), 882-897.
    • K. Bartosz, Variable time-step theta-scheme for Nonlinear second order evolution inclusion, International Journal of Numerical Analysis and Modeling, 14 (2017), 842-868.
    • K. Bartosz, D. Danan, P. Szafraniec, Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law, Computers & Mathematics with Applications, 73 (2017), 727-746.
    • S. Dudek, P. Kalita, S. Migorski, Steady flow of generalized Newtonian fluid with multivalued rheology and nonmonotone friction law, Computers & Mathematics with Applications, 74 (2017), 1813-1825.
    • R. Filipek, P. Kalita, L. Sapa, K. Szyszkiewicz, On local weak solutions to Nernst-Planck-Poisson system, Applicable Analysis, 96 (2017), 2316-2332.
    • L. Gasinski, L. Klimczak, N.S. Papageorgiou, Nonlinear Dirichlet problems with no growth restriction on the reaction, Zeitschrift fur Analysis und Ihre Anwendungen, 36 (2017), 209-238.
    • L. Gasinski, N.S. Papageorgiou, Pairs of nontrivial solutions for resonant Neumann problems, Dynamic Systems and Applications, 26 (2017), 309-326.
    • L. Gasinski, N.S.Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calculus of Variations and Partial Differential Equations, 56 (2017), 88.
    • L. Gasinski, N.S. Papageorgiou, Positive, extremal and nodal solutions for nonlinear parametric problems, Journal of Convex Analysis, 24 (2017), 261-285.
    • J.F. Han, S. Migorski, H.D. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Applied Mathematics and Computations, 303 (2017), 1-18.
    • W.M. Han, M. Sofonea, M. Barboteu, Numerical analysis of elliptic hemivariational inequalities, SIAM Journal on Numerical Analysis, 55 (2017), 640-663.
    • Y. Huang, Y.R. Bai, Y.L. Liu, I. Szanto, Existence pf solutions for fractional interval-valued differential equations by the method of upper and lower solutions, Miskolc Mathematical Notes, 18 (2017), 811-836.
    • A. Kulig, A quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term and friction, Nonlinear Analysis: Real World Applications, 33 (2017), 226-236.
    • X.W. Li, Z.H. Liu, Relaxation in nonconvex optimal control problems for nonautonomous fractional evolution equations, Pacific Journal of Optimization, 13 (2017), 443-462.
    • X.W. Li, Z.H. Liu, C.C. Tisdell, Approximate controllability of fractional control systems with time delay using the sequence method, Electronic Journal of Differential Equations, 2017, 272.
    • X.W. Li, Z.H. Liu, C.C. Tisdell, Existence and exact controllability of fractional evolution inclusions with damping, Mathematical Methods in the Applied Sciences, 40 (2017), 4548-4559.
    • Z.H. Liu, S. Migorski, S.D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, Journal of Differential Equations, 263 (2017), 3989-4006.
    • Z.H. Liu, S. Migorski, B. Zeng, Optimal feedback control and controllability for hyperbolic evolution inclusions of Clarke's subdifferential type, Computers & Mathematics with Applications, 74 (2017), 3183-3194.
    • Z. H. Liu, S. Zeng, Differential variational inequalities in infinite Banach spaces, Acta Mathematica Scientia, 37B (2017), 26-32.
    • S. Migórski, A. Ochal, M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, Journal of Elasticity, 127 (2017), 151–178.
    • S. Migorski, J. Ogorzaly, A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction, Acta Mathematica Scientia, 37 (2017), 1639-1652.
    • S. Migorski, J. Ogorzaly, Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics, Zeitschrift fur angewandte Mathematik und Physik, 68 (2017), 1-22.
    • J. Ogorzaly, Dynamic contact problem with thermal effect, Georgian Mathematical Journal, 24(2017), 591-607.
    • M. Sofonea, K. Bartosz, A dynamic contact model for viscoelastic plates, The Quarterly Journal of Mechanics and Applied Mathematics, 70 (2017), 1-19.
    • P. Szafraniec, Evolutionary Boussinesq model with nonmonotone friction and heat flux boundary conditions, Nonlinear Analysis: Real World Applications, 34 (2017), 403-415.
    • P. Szafraniec, Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects, Acta Mathematica Scienta, 37 (2017), 1048-1060.
    • M.C. Zelati, P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 1857-1873.
    • S.D. Zeng, S. Migorski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, Journal of Mathematical Analysis and Applications, 455 (2017), 619-637.
    • K. Bartosz, P. Kalita, S. Migorski, A. Ochal, M. Sofonea, History-dependent problems with applications to contact models for elastic beams, Applied Mathematics and Optimization, 73 (2016), 71-98.
    • K. Bartosz, M. Sofonea, Modeling and analysis of a contact problem for a viscoelastic rod, Zeitschrift fur Angewandte Mathematik und Physik, 67 (2016), 21p.
    • K. Bartosz, M. Sofonea, The Rothe method for variational-hemivariational inequalities with applications to contact mechanics, SIAM Journal of Mathematical Analysis, 48 (2016), 861-883.
    • S. Dudek, P. Kalita, S. Migorski, Stationary Oberbeck-Boussinesq model of generalized Newtonian fluid governed by multivalued partial differential equations, Applicable Analysis, 96 (2016), 2192-2217.
    • C. Fang, W. Han, S. Migorski, M. Sofonea, A class of hemivariational inequalities for nonstationary Navier-Stokes equations, Nonlinear Analysis: Real World Applications, 31 (2016), 257-276.
    • J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM Journal on Mathematical Analysis, 48 (2016), 3065-3089.
    • L. Gasinski, P. Kalita, On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage, European Journal of Applied Mathematics, 27 (2016), 625-646.
    • L. Gasiński, L. Klimczak, N.S. Papageorgiou, Nonlinear noncoercive Neumann problems, Communications on Pure and Applied Analysis, 15 (2016), 1107-1123.
    • L. Gasinski, A. Ochal, M. Shillor, Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Analysis: Real World Applications, 27 (2016), 183-202.
    • L. Gasiński, N.S. Papageorgiou, Nonlinear elliptic equations with a jumping reaction, Journal of Mathematical Analysis and Applications, 443 (2016), 1033-1070.
    • L. Gasiński, N.S. Papageorgiou, Positive solutions for the generalized nonlinear logistic equations, Canadian Mathematical Bulletin, 59 (2016), 73-86.
    • L. Gasinski, N.S. Papageorgiou, Parametric p-Laplacian equations with superlinear reaction, Dynamic Systems and Applications, 24 (2016), 523-558.
    • J.F. Han, S. Migorski, H. Zeng, Analysis of a dynamic viscoelastic unilateral contact problem with normal damped response, Nonlinear Analysis: Real World Applications, 28 (2016), 229-250.
    • Y. Huang, Z.H. Liu, R. Wang, Quasilinearization for higher order impulsive fractional differential equations, Applied and Computational Mathematics, 15 (2016), 159-171.
    • P. Kalita, S. Migorski, M. Sofonea, A class of subdifferential inclusions for elastic unilateral contact problems, Set-Valued Variational Analysis, 24 (2016), 355-376.
    • Y. Li, S. Migorski, J. F. Han, A quasistatic frictional contact problem with damage involving viscoelastic materials with short memory, Mathematics and Mechanics of Solids, 21 (2016), 1167-1183.
    • L. Lu, Z.H. Liu, M.J. Bin, Approximate controllability for stochastic evolution inclusions of Clarke's subdifferential type, Applied Mathematics and Computations, 286 (2016), 201-212.
    • L. Lu, Z.H. Liu, W. Jiang, J.L. Luo, Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities, Mathematical Methods in the Applied Sciences, 39(2016), 5452-5464.
    • Z.H. Liu, S.D. Zeng, D. Motreanu, Evolutionary problems driven by variational inequalities, Journal of Differential Equations, 260(2016), 6787-6799.
    • Z.H. Liu, S.D. Zeng, B. Zeng, Well-posedness for mixed quasi-variational hemivariational inequalities, Topological Methods in Nonlinear Analysis, 47 (2016), 561-578.
    • S. Migorski, J. Ogorzaly, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications, 442 (2016), 685-702.
    • J. Ogorzaly, A dynamic contact problem with history-dependent operators, Journal of Elasticity, 124 (2016), 107-132.
    • M. Sofonea, S. Migorski, A class of history-dependent variational-hemivariational inequalities, Nonlinear Differential Equations and Applications, 23 (2016).
    • P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Mathematics and Mechanics of Solids, 21 (2016), 525-538.
    • L. Yunxiang, A dynamic contact problem for elastic-viscoplastic materials with normal damped response and damage, Applicable Analysis, 95 (2016), 2485-2500.
    • M. Barboteu, K. Bartosz, W. Han, T. Janiczko, Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact, SIAM Journal of Numerical Analysis, 53 (2015), 527-550.
    • M. Barboteu, K. Bartosz, P. Kalita, A dynamic viscoelastic contact problem with normal compliance, finite penetration and nonmonotone slip rate dependent friction, Nonlinear Analysis Series B: Real World Applications, 22 (2015), 452-472.
    • K. Bartosz, X.L. Cheng, P. Kalita, Y. Yu, C. Zheng, Rothe method for parabolic variational hemivariational inequalities, Journal of Mathematical Analysis and Applications, 423 (2015), 841-862.
    • K. Bartosz, Z. Denkowski, P. Kalita, Sensitivity of optimal solutions to control problems for second order evolution subdifferential inclusions, Applied Mathematics and Optimization, 71 (2015), 379-410.
    • M. Coti Zelati, P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561.
    • J. Czepiel, P. Kalita, Numerical solution of a variational-hemivariational inequality modelling simplified adhesion of an elastic body, IMA Journal of Numerical Analysis, 35 (2015), 372-393.
    • S. Dudek, P. Kalita, S. Migorski, Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions, Zeitschrift fur angewandte Mathematik und Physik, 66 (2015), 2625-2646.
    • L. Gasinski, Z. Liu, S. Migorski, A. Ochal, Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, Journal of Optimization Theory and Applications, 164 (2015), 514-533.
    • L. Gasinski, S. Migorski, A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Applicable Analysis, 94 (2015), 1670-1694.
    • L. Gasinski, A. Ochal, M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015), 251-275.
    • L. Gasinski, D. O'Regan, N.S. Papageorgiou, A variational approach to nonlinear logistic equations, Communications in Contemporary Mathematics, 17 (2015), 37p.
    • L. Gasinski, D. O'Regan, N.S. Papageorgiou, Positive solutions for nonlinear nonhomogeneous Robin problems, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015), 435-458.
    • L. Gasinski, N.S. Papageorgiou, Extremal, nodal and stable solutions for nonlinear elliptic equations, Advanced Nonlinear Studies, 15 (2015), 629-665.
    • L. Gasinski, N.S. Papageorgiou, Positive solutions for the Neumann p-Laplacian with superdiffusive reaction, Bulletin of the Malaysian Mathematical Sciences Society, 40 (2015), 1711–1731.
    • L. Gasinski, N.S. Papageorgiou, Resonant equations with the Neumann p-Laplacian plus an indefinite potential, Journal of Mathematical Analysis and Applications, 422 (2015), 1146-1179.
    • L. Gasinski, N.S. Papageorgiou, Nonlinear, nonhomogeneous periodic problems with no growth control on the reaction, Journal of Dynamic Control Systems, 21(2015), 423-441.
    • L. Gasinski, N.S. Papageorgiou, Nodal and multiple solutions for nonlinear elliptic equations involving a reaction with zeros, Dynamics of PDE, 12 (2015), 13-42.
    • J. Han, Y. Li, S. Migorski, Analysis of an adhesive contact problem for viscoelastic materials with long memory, Journal of Mathematical Analysis and Applications, 1 (2015), 646-668.
    • Y. Huang, Z.H. Liu, S. Migorski, Elliptic hemivariational inequalities with nonhomogeneous Neumann boundary conditions and their applications to static frictional contact problems, Acta Applicandae Mathematicae, 138 (2015), 153-170.
    • X.W. Li, Z.H. Liu, S. Migorski, Approximate controllability for second order Nonlinear evolution hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations, 100 (2015), 1-16.
    • Z. H. Liu, X. W. Li, Approximate controllability for a class of hemivariational inequalities, Nonlinear Analysis Series B: Real World Applications, 22 (2015), 581-591.
    • Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM Journal on Control and Optimization, 53 (2015), 1920-1933.
    • Z.H. Liu, X.W. Li, D. Motreanu, Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces, SIAM Journal on Control and Optimization, 53 (2015), 3238-3244.
    • Z.H. Liu, J.Y. Lv, Existence results for impulsive nonlinear fractional differential equations with nonlocal boundary conditions, Mathematica Slovaca, 65 (2015), 1291-1308.
    • Z.H. Liu, B. Zeng, Existence and controllability for fractional evolution inclusions of Clarke's subdifferential type, Applied Mathematics and Computation, 257 (2015), 178-189.
    • L. Lu, Z. H. Liu, Existence and controllability results for stochastic fractional evolution hemivariational inequalities, Applied Mathematics and Computation, 268 (2015), 1164-1176.
    • S. Migorski, A. Ochal, M. Sofonea, History-dependent variational-hemivariational inequalities in contact mechanics, Nonlinear Analysis: Real World Applications, 22 (2015), 604-618.
    • M. Sofonea, W. Han, S. Migorski, Numerical analysis of history-dependent variational-hemivariational inequalities with applications to contact problems, European Journal of Applied Mathematics, 26 (2015), 427-452.
    • B. Barabasz, E. Gajda-Zagorska, S. Migorski, M. Paszynski, R. Schaefer, M. Smolka, A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science, 24 (2014), 865-886.
    • X. Cheng, S. Migorski, A. Ochal, M. Sofonea, Analysis of two quasistatic history-dependent contact models, Discrete and Continuous Dynamical Systems, Series B, 19 (2014), 2425-2445.
    • L. Gasinski, N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Communications on Pure and Applied Analysis, 13 (2014), 1491-1512.
    • L. Gasinski, N.S. Papageorgiou, Multiplicity of solutions for Neumann problems resonant at any eigenvalue, Kyoto Journal of Mathematics, 54 (2014), 259-269.
    • L. Gasinski, N.S. Papageorgiou, Positive solutions for parametric equidiffusive p-laplacian equations, Acta Mathematica Scientia, 34B (2014), 610-618.
    • L. Gasinski, N.S. Papageorgiou, Dirichlet (p,q)-equations at resonance, Discrete and Continuous Dynamical Systems, 34 (2014), 2037-2060.
    • L. Gasinski, N.S. Papageorgiou, On generalized logistic equations with a nonhomogeneous differential operator, Dynamical Systems: An International Journal, 29 (2014), 190-207.
    • L. Gasinski, N.S. Papageorgiou, A pair of positive solutions for (p,q)-equations with combined nonlinearities, Communications on Pure and Applied Analysis, 13 (2014), 203-215.
    • W. Han, S. Migorski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis, 46 (2014), 3891-3912.
    • P. Kalita, G. Lukaszewicz, Attractors for Navier-Stokes flows with multivalued and nonmonotone subdifferential boundary conditions, Nonlinear Analysis: Real World Applications, 19 (2014), 75-88.
    • Z.H. Liu, M.J. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces, Journal of Integral Equations and Applications, 26 (2014), 527-551.
    • S. Migorski, A. Ochal, M. Shillor, M. Sofonea, A model of a spring-mass-damper system with temperature-dependent friction, European Journal of Applied Mathematics, 25 (2014), 45-64.
    • S. Migorski, A. Ochal, M. Sofonea, Analysis of a piezoelectric contact problem with subdifferential boundary condition, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 144A (2014), 1007–1025.
    • S. Migorski, P. Szafraniec, A class of dynamic frictional contact problems governed by a system of hemivariational inequalities, Nonlinear Analysis: Real World Applications, 15 (2014), 158-171.
    • M. Barboteu, K. Bartosz, P. Kalita, An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science, 23 (2013), 263-276.
    • J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Variational and numerical analysis of a mixed kinetic-diffusion surfactant model for the modified the Langmuir-Hinshelwood equation, Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, Almeria, Spain, June 24-27, 2013, vol. II, 601-614.
    • L. Gasinski, N.S. Papageorgiou, Nonlinear Neumann problems with constraints, Funkcialaj Ekvacioj - Serion Internacia, 56 (2013), 249-270.
    • L. Gasinski, N.S. Papageorgiou, Nonlinear periodic equations driven by a nonhomogeneous differential operator, Journal of Nonlinear and Convex Analysis, 14 (2013), 583-600.
    • S. Migorski, A note on optimal control problem for a hemivariational inequality modeling fluid flow, Discrete and Continuous Dynamical Systems, Supplement 2013, 533-542.
    • S. Migorski, A. Ochal, M. Sofonea, Weak solvability of two quasistatic viscoelastic contact problems, Mathematics and Mechanics of Solids, 18 (2013), 745-759.
    • S. Migorski, A. Ochal, M. Sofonea, History-dependent hemivariational inequalities with applications to Contact Mechanics, Annals of the University of Bucharest. Mathematical Series, 4 (LXII) (2013), 193-212.

Chapters in monographs

    • P. Kalita, S. Migorski, M. Sofonea, A multivalued variational inequality with unilateral constraints, in: System Modeling and Optimization, Series: IFIP Advances in Information and Communication Technology, L. Bociu et al. (eds.), Springer, 2016, in press.
    • L. Gasinski, N. S. Papageorgiou, Bifurcation phenomena for parametric nonlinear elliptic hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 3-37, Springer, Heidelberg, New York, Dordrecht, London.
    • S. Migorski, A. Ochal, M. Sofonea, Evolutionary inclusions and hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 39-64, Springer, Heidelberg, New York, Dordrecht, London.
    • K. Bartosz, Numerical methods for evolution hemivariational inequalities, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 111-144, Springer, Heidelberg, New York, Dordrecht, London.
    • F. Wang, W. Han, J. Huang, T. Zhang, Discontinuous Galerkin methods for an elliptic variational inequality of fourth-order, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 199-222, Springer, Heidelberg, New York, Dordrecht, London.
    • P. Kalita, G. Lukaszewicz, On large time asymptotics for two classes of contact problems, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 299-332, Springer, Heidelberg, New York, Dordrecht, London.
    • S. Migorski, A. Ochal, M. Sofonea, Two history-dependent contact problems, in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, Edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 355-380, Springer, Heidelberg, New York, Dordrecht, London.
    • P. Kalita, G. Lukaszewicz, Attractors for multivalued processes with weak continuity properties, in: Continuous and Distributed Systems II Theory and Applications, Studies in Systems, Decision and Control, vol. 30 (2015), 149-166, Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London.
    • J.F. Han, S. Migorski, Continuity of the solution set to second order evolution inclusions, in: System Modeling and Optimization, Series: IFIP Advances in Information and Communication Technology, vol. 443, Ch. Potzsche et al. (Eds.), Springer, Berlin, Heidelberg, 2014, 138-147.
    • S. Migorski, A. Ochal, M. Sofonea, A class of history-dependent inclusions with applications to contact problems, in: Optimization and Control Techniques and Applications, Springer Proceedings in Mathematics & Statistics, vol. 86, Edited by Honglei Xu, Kok Lay Teo, Yi Zhang, Springer, Heidelberg, New York, Dordrecht, London, 2014, 45-74.